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It is shown that the Clar number of a benzenoid hydrocarbon H (defined as the number of 
circles in a Clar formula, or equivalently as the maximum number of mutually resonant hexa- 
gons of H) can be determined by mixed-integer programming. Moreover, linear programming 
appears to suffice in practice to find in moderate computing time the Clar number of pericon- 
densed hydrocarbons with more than a thousand hexagons. 

1. In t roduc t ion  

It has long been known that many chemical properties of a benzenoid hydrocar- 
bon can be explained in terms of the number of circles in a Clar formula for this 
molecule, or in other words, in terms of its maximum number of mutually resonant 
hexagons [1-10]. In ref. [11] it was proposed to call this number the Clar n u m b e r  

of a benzenoid hydrocarbon. Note that the Clar number is equal to the degree of the 
sextet polynomial [7,12-14], as well as of the Clar polynomial [15,16], which have 
both been much studied in connection with description of resonance relations 
among individual hexagons of benzenoid hydrocarbons. When the Clar number 
increases within a series of isomeric benzenoid hydrocarbons one observes 
increased stability, as well as a change of color from dark blue-green to red, yellow 
or white [5,6,10]. Such observations, and many others, led Clar to devise his aro- 
matic sextet theory. Aihara [1] examined 52 benzenoid hydrocarbons with a unique 
Clar structural formula and concluded that the Clar number gives a rough esti- 
mate of the Dewar-type resonance energy [17,18]. Many papers discuss Clar formu- 
las from both the chemical and mathematical points of view [19-36]. For recent 
surveys of aromatic sextet theory, see ref. [6,37]. 

Yet, while some upper bounds are known [11,38], no general method appears 
to have been proposed to determine the Clar number of a benzenoid hydrocarbon. 
There is also no general method to draw a Clar formula. Only the case of multiple 
chain-like molecules (catacondensed benzenoids) has been completely solved 
[16,39]. It turns out however, as shown below, that mixed-integer programming 
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[40,41], and, in practice, linear programming (which may be viewed as a subcase 
of mixed-integer programming) allow to solve efficiently this problem even for very 
large molecules (pericondensed benzenoids with more than a thousand hexagons). 
Integer optimal solutions were obtained for all test problems when solving the lin- 
ear programming relaxation of the mixed-integer program (in which integrality 
constraints on the variables are omitted). We conjecture that this property holds 
for all benzenoid hydrocarbons. Moreover, this mixed integer programming 
approach can be extended to determine all Clar formulae of a benzenoid hydrocar- 
bon. 

This paper is organized as follows. We present some basic definitions in section 
2. The mixed-integer programming model for determining a Clar structural for- 
mula as well as the Clar number of a benzenoid hydrocarbon is given in section 3. 
Computational results are also presented in that section. Finally in section 4 we 
give an upper bound for the objective value of the mixed-integer linear program 
and show that the conjecture on integral solutions mentioned above is closely 
related to a conjecture ofref. [11]. 

2. Defini t ions 

The skeleton of a benzenoid hydrocarbon (in which hydrogen atoms are sup- 
pressed) may be described by a graph called benzenoid system. Such a graph is 
defined as a finite connected subgraph of the infinite hexagonal lattice without cut 
vertices and nonhexagonal interior faces (see fig. la). A generalizedbenzenoidsys-  
tern is defined in a similar way, but omitting the last restrictions, i.e., cut vertices 
and non_hexagonal interior faces are allowed (see fig. lb). Note that a benzenoid 
system is also a generalized benzenoid system, but the converse is not true. 

A Kekul6 structure or perfect  matching of a generalized benzenoid system is a 
set of disjoint edges covering all vertices. Up to now, no benzenoid hydrocarbons 
which do not correspond to benzenoid systems with a Kekul6 structure have been 
synthesized, even as transient species [6]. In this paper, all (generalized) benzenoid 

@ 
(a) (b) 

Fig. 1. A benzenoid system and a generalized benzenoid system. 
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systems considered are assumed to have a Kekul6 structure. Since the Clar formu- 
las and the Clar number of a benzenoid hydrocarbon are determined by its topolo- 
gical structure, we focus our discussion on (generalized) benzenoid systems. 

A set of disjoint hexagons of a benzenoid system (or of a generalized benzenoid 
system) is resonant ifa Kekul6 structure can be written in which each hexagon in the 
set contains three double bonds (i.e., three bonds which belong to the Kekul6 struc- 
ture). A resonant set is maximum if its cardinality is maximum. The hexagons in a 
resonant set are said to be mutually resonant. 

Clar proposed to represent resonant hexagons in a benzenoid system by drawing 
circles in them following some rules. The resulting diagrams are called Clar struc- 
tural formulae (or Clar formulae for short). Rules for obtaining a Clar formula for 
a (generalized) benzenoid system are as follows (Gutman and Cyvin [6,42]): 

(a) Circles are never drawn in adjacent hexagons (two hexagons are adjacent if 
they have an edge in common); 

(b) The generalized benzenoid system obtained by deleting the vertices ofaU hexa- 
gons containing a circle must have a perfect matching (or Kekul6 structure) or 
must be empty; 

(c) The number of circles is maximum subject to (a) and (b). 

Drawing a Kekul6 structure in the generalized benzenoid system obtained by 
deleting all hexagons with a circle is straightforward (see fig. 2). Moreover such a 
Kekul6 structure is unique [43]. 

It follows from these rules that a set S of disjoint hexagons of a benzenoid sys- 
tem H (or of a generalized benzenoid system) is a maximum resonant set if and only 
if there is a Clar formula of H in which the set of hexagons possessing circles is S. 

3. A mixed integer linear program for Clar formula 

The problem of determining the Clar number of a benzenoid hydrocarbon will 
be solved by using techniques of mathematical programming. This discipline aims 
at finding optimal solutions to constrained optimization problems. The easiest and 
best known case is linear programming [44,45] in which the function to be opti- 
mized (called the objective function) is linear and the constraints are linear inequal- 

Fig. 2. 
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ities or equations. The set of feasible solutions, i.e. those vectors satisfying the con- 
straints, defines a convex polyhedron. It is well known that an optimal solution of 
a linear program always occurs at a vertex of this polyhedron. The classical method 
to solve linear program is the simplex method [44,45] and consists in finding a first 
vertex of the polyhedron and then proceeding iteratively from this vertex to an 
adjacent one (i.e. one on an edge of the polyhedron going through that vertex) with 
a better value of the objective function, until the optimal vertex is reached (see fig. 
3a). Recently different algorithms which prescribe a trajectory going through the 
interior of the polyhedron, known as interior point methods [46,47], have been 
devised (see fig. 3b). They tend to perform better than the simplex method on large 
problems. Both the simplex algorithm and an interior point method will be used. 
In addition we will consider a more complex type of problem from mathematical 
programming, i.e. linear programs in 0-1 or mixed variables, in which in addition to 
the above constraints some or all of the variables are restricted to take only the 
values 0 or 1. A branch and bound approach [40,41] to the solution of such problems 
is described below. 

3.1. MIXED INTEGER PROGRAM 

All results given in this section can be extended to generalized benzenoid sys- 
tems in a straightforward way. 

Any vertex of a benzenoid system H for which a Clar formula is known must 
either (i) belong to a hexagon containing a circle, or (ii) not belong to such a hexa- 
gon and be an end vertex of a double bond. We now translate this property in math- 
ematical terms. 

Let us associate with each hexagon h o f H  a 0-1 variable Yh which is equal to 1 if 
h contains a circle and equal to 0 otherwise. Moreover, let us associate with each 
edge (i,j) joining vertices i andj  of H, a variable Xg, j which is equal to 1 if this edge is 
not one of a hexagon containing a circle and is a double bond in the given Clar for- 
mula, and is equal to 0 otherwise. Let N(i) and H(i) denote, respectively, the index 

optimal vertex 

initial vertex 

l O ~ X 

(a) Illustration of simplex method 

Fig. 3. 

i n i t i a l ~  ptimaivc~cx 

9 ~' X 

(b) Illustration of interior point method 
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sets of the vertices adjacent to vertex i and of the hexagons containing vertex i in 
H. Let V ( H )  and E ( H )  denote the vertex set and the edge set of H,  respectively. 
Then the Yh, xi, j so defined satisfy all the constraints of the following integer linear 
program (ILP), and therefore form a feasible solution for this program (we will 
see that this feasible solution is also optimal): 

maximize  z = ~ Yh 
h~H 

subject to the constraints : 

~Xi , j 'q -  ~--~ yh = 1 
jEN(i) hEH(i) 

Xi, j,Yh e {0, 1} 

forger(H) (ZLe) 

for (i,j)  E(H) and h H. 

So the Clar number of H is less than or equal to the optimal objective value of 
ILP. On the other hand, for any optimal solution (X*, Y*) of this integer linear pro- 
gram, we may draw a circle in the hexagon h if h~ = 1 in Y* and a double bond on 
the edge (i , j)  if xi* j = 1 in X*. Then a Clar formula is obtained. Thus the optimal 
objective value of the integer linear program is exactly the Clar number of H. 
Therefore the feasible solution of the integer linear program obtained from a Clar 
formula is also an optimal solution to the program. Summarizing these results, we 
have: 

THEOREM 1 
There is a one-to-one correspondence between Clar formulae of a benzenoid sys- 

tem H and optimal solutions of the integer linear program ILP. 

In fig. 4, we illustrate this correspondence by an example. Moreover, the inte- 
grality constraints on the xij variables can be relaxed to 0 ~< xi, j ~ 1. The reason is 

2 x~,9=l ' 

4 8 Yhl=l'  

h 2 h 3 ~ ~ Yfi4=l, 

13 th x* * Theo er ijandYl~ 
a r e  z e r o .  

14 ~ 16 

15 

Fig. 4. Correspondence between a Clar formula and an optimal solution oflLP. 
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the following: Let (X*, Y*) be an optimal solution of the mixed-integer program 
(MIP) obtained by relaxing the constraints that the xi,j be equal to 0 or 1 to 
0 <~xi, j <~ 1; let H ~ be the subgraph of H obtained by deleting the hexagons which 
correspond to the y~'s equal to 1 in Y*; then H '  is a bipartite graph and the x~j's of 
X* which are not 0 form a fractional matching [41] of H',  i . e .  ~j~N(i) x~j ---~ 1 for 
each vertex i o f H  ~. So by a well-known theorem [48-50] H ~ has a perfect matching 
or, in other words a Kekul6 structure; thus the hexagons corresponding to y~, = 1 
in Y* are mutually resonant; since the objective value of MIP is at least as large as 
that of the integer linear program ILP (as some constraints of ILP have been 
relaxed to obtain MIP), the hexagons with Yh -- 1 form a maximum resonant set. 
From a maximum resonant set, a Clar formula can be drawn easily. By using a simi- 
lar reasoning as above we can prove the following theorem (the proof of which is 
omitted here): 

THEOREM 2 
Let (RLP) be the linear program obtained by relaxing the constraints Yh = 0 or 

1 to O<~yh ~< 1 in MIP. Then the hexagons which correspond to the variables Yh 
equal to 1 in any feasible (but not necessary optimal) solution of RLP form a reso- 
nant set. Thus the number of variables Yh equal to 1 in any feasible solution of 
RLP is less than or equal to the Clar number of the corresponding benzenoid sys- 
tem H. 

3.2. SOLVING MIP 

We first describe the general idea of the solution method for the mixed integer 
linear program MIP given in the previous subsection. This program is solved by 
first relaxing the integrality constraints on the yh variables to 0 ~<Yh ~< 1 and solving 
the resulting linear program (denoted by RLP in theorem 2). This provides an 
upper bound on the Clar number. Then, if some variable Yh takes a fractional value 
in the optimal solution of this relaxed problem, branching is done by fixing Yh at 0 
or at 1, thus obtaining two linear programming subproblems. By noting that any 
feasible solution to these subproblems is also a feasible solution to RLP, the conclu- 
sion of theorem 2 is also valid for the subproblems. Further branching on each sub- 
problem takes place unless an integer solution is found or the optimal value of the 
linear program corresponding to the subproblem is less than or equal to the number 
of variables Yh equal to 1 in the best solution yet found (this is justified by theorem 
2; the number ofyh equal to 1 in the best solution yet found is less than or equal to 
the Clar number of H). 

We now state the above more formally: 
Let RLP denote the linear program obtained by relaxing Yh = 1 or 0 to 

0 ~Yh ~ 1 in MIP. 

M e t h o d  (solving MIP): 
Initial  Step: Nodeset = {RLP}. 
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Step 1: Determine an optimal solution for each (as yet unsolved) linear program 
in Nodeset. Let Q be the linear program in Nodeset which has the maximum 
objective function value. Let (X*, Y*) be an optimal solution for Q. If all the 
components of Y* which correspond to the hexagons of H are integers, then the 
hexagons whose corresponding variables are 1 in Y* form a maximum reso- 
nant set of H. Stop. Otherwise let N be the number of variables Yh equal to 1 in 
Y*. Delete the nodes other than Q which have an optimal objective function va- 
lue less than or equal to N. Proceed to Step 2. 

Step 2: If Y* has a non-integer component which corresponds to a hexagon s of 
H,  then let y~ be such a component. Add the constraints Ys = 0 and Ys = 1 to Q 
one at a time thus defining two new linear programs Q0 and Q1 (This operation 
is called branching). Set Nodeset to be Nodeset L) {Q0, Q1} - {O}. Return to 
Step 1. 

It turns out that in all of the many examples which we have solved, the initial lin- 
ear programming upper bound on the Clar number was always tight and the corre- 
sponding optimal solution integer. So the mixed integer program was solved as a 
linear program, i.e., without branching. In other words, in none of the instances 
considered did the mixed integer program have an integrality gap [40,41] (This lin- 
ear program does not have a coefficient matrix of one of the known forms which 
guarantee the absence of such a gap for any objective function, i.e., it is not totally 
unimodular nor perfect [40,41]. See ref. [41 ] for undefined terms.) 

Several benzenoid systems are presented in fig. 5, each of them (except for two 
generic ones) with a Clar formula and computing CPU time on a SUN/SPARC sta- 
tion necessary to find it. The efficient interior point linear programming code 
OB1 [47] was used to get an optimal solution (not necessarily at a vertex of the poly- 
hedron of feasible solutions of RLP) followed by some simplex interations to get a 
basic optimal solution (i.e., one corresponding to a vertex of the polyhedron). All 
problems in fig. 5 could be solved in less than halfa minute of computing time each. 
In fig. 6, we present three further benzenoid systems with their number of hexagons 
(over a thousand) and their Clar number (since these benzenoid systems are too 
large, we are unable to draw a Clar formula for them in the diagram). We also 
report the number of iterations to get an optimal solution by the following meth- 
ods: (1) by OB1 only; (2) first by OB1 to get an optimal solution, which may not be 
basic (i.e., a solution which corresponds to a vertex of the polyhedron of feasible 
solutions) followed by the simplex method to get a basic optimal solution; (3) by the 
simplex method only. When the number of iterations of the simplex method follow- 
ing the use of OB1 is 0, this means the initial vertex for the simplex method which 
is found from the optimal solution obtained by OB1 is optimal, and therefore no 
further iterations are needed. Computing times are presented for all these strate- 
gies. For our test problems, the OB1 code was much faster than the simplex 
method. 
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22 # of hexagons: 1395 Clar number: 363 

Iterations CPU Time (See.) 

OB 1 11 42.12 

OBI: 11 
OB 1-Simplex Simplex: 0 235.55 

Simplex PMsc 1:2842 2:3985 949.42 

# of hexagons: 1344 Clar number: 352 

Iterations CPU Time (Sec.) 

OB 1 10 40.08 

OB 1-Simplex OBI: 10 227.73 
Simplex: 0 

Simplex Plaa~ 1:2424 839.31 
Plmse 2:3926 

22 

22 
# of hexagons: 1320 Clar number: 60 

Iterations CPU Time (See.) 

OB 1 9 24.26 

OBI: 9 
OB 1-Simplex Simplex: 0 66.88 

Simplex ~ 1:106 
Phase 2:488 42.66 

Fig. 6. Computing times for determining the Clar number and a Clar formula of large pericondensed 
benzenoid systems using the simplex algorithm and an interior point method for linear programming 

(ore). 

3.3. E N U M E R A T I O N  OF CLAR F O R M U L A E  

If  all Clar formulae must be found, only slight and standard modifications need 

to be made in the way to solve the mixed integer program given above. Specifi- 
cally, subproblems cannot be deleted anymore if the bound given by the solution of 

the current linear programming relaxation is equal to the current value of the best 
known solution (i.e., to the Clar number as soon as one Clar formula has been 
found). But several shortcuts which accelerate the solution are possible and are par- 
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ticularly useful if there are many Clar formulae (in which case the computing time 
increases considerably). 

First, the problem can be decomposed if the related benzenoid system has fixed 
bonds (a bond or edge is f i xed  if  it belongs to all of the Kekul6 structures or to none 
of them). A normal component of H is a maximal connected subgraph which has 
no fixed bonds. Note that any hexagon which contains a circle in a Clar formula 
cannot have fixed bonds. It has often been observed [6,51 ] and proved rigorously in 
ref. [52] that if H has fixed bonds it has at least two normal components and all its 
normal components are normal benzenoid systems (i.e. benzenoid systems with 
no fixed bonds). A linear algorithm to find all fixed bonds of benzenoid systems has 
also been given in ref. [53]. Thus all normal components of H can be found in linear 
time. Clar formulae for each normal component are then found. All Clar formulae 
of H are obtained by combining in all possible ways one Clar formula from each 
of its normal components. 

Second, each time a Clar formula is found one can add to the mixed integer pro- 
gram the constraint 

~-~yh <~lC [ - 1, 
heC 

where C is the index set of hexagons containing a circle. This constraint forbids to 
obtain again this Clar formula but not any other one. The accumulation of such 
constraints gives tighter and tighter bounds until it is shown that all Clar formulae 
have been enumerated. However, this time fractional solutions are obtained for 
the linear programming relaxation and branching is needed to get integer ones. The 
different phases of the determination of all Clar formulae for a benzenoid hydro- 
carbon H are illustrated in fig. 7. 

4. Upper bound for the opt imal  objective funct ion value of  R L P  

Up to now we have not found a proof that the optimal objective function value 
of RLP is equal to the Clar number of the corresponding benzenoid system, but we 
conjecture that this is indeed the case. We next present an upper bound on the opti- 
mal objective function value of RLP. If a conjecture (which will be recalled later) 
given by us in ref. [11] is true, then the optimal objective function value of RLP is 
exactly the Clar number of the corresponding benzenoid system. Should this be the 
case the problem of finding the Clar number of a benzenoid system could be solved 
as a linear program. 

More definitions are needed. Note that a (generalized) benzenoid system H is a 
bipartite graph. We color the vertex set of H in two colors (black and white) such 
that two adjacent vertices have different colors. 

A cut of a (generalized) benzenoid system H is a non-self-intersecting curve C 
(which may be closed or not) in the plane such that (a) C intersects H only at edges, 
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(a) 

A bcnzcnoid system 

CD 

% 
(b) 

Two normal components 

(e) 

Clar formulas for each normal c o m ~  

(d) 

All Clar formulas far the bea~noid system 

Fig. 7. Determination of all Clar formulae ofa benzenoid system. 

(b) removal  of  all the edges intersecting C leads to a disconnected subgraph 
H - C such that the end vertices of  each edge intersecting C belong to different con- 
nected components  of  H - C, and (c) the black end vertices of  the edges intersect- 
ing C are on one side and the white ones are on the other side of  C (see fig. 8 for 
several examples of  cuts). Note  that H - C may  have more  than two connected 
components .  So this definition is slightly different f rom the definition o f  cuts given 

Fig. 8. Cuts ofa benzenoid system. 
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in ref. [54], where it is required there that H - C have two connected components  
only. 

The blackside (white side) of a general cut C is the union of the connected compo- 
nents of  H - C which contain no white (black) cut-boundary vertices. Two cuts 
are equal, by definition, if they intersect the same set of edges. 

A set C of  cuts of  a (generalized) benzenoid system H is a cover if each hexagon 
of H intersects with at least one cut in e. A cover e is perfect if each hexagon of  H 
intersects with exactly one cut in e. 

Let M be a Kekul6 structure and C be a cut of a (generalized) benzenoid system 
H. Let re(C) be the number  of edges in M which intersect C. The following is a 
basic property of  a cut which is proved in ref. [11]: 

THEOREM 3 

Let C be a cut of  a (generalized) benzenoid system H. Then re(C) is independent 
of  M. 

Let e(H)  be a set of  cuts of a (generalized) benzenoid system H and c(C(H)) 
= ~ c e  e(n) m(C). An immediate consequence of  theorem 3 is the following. 

COROLLARY 1 

c(e(H))  remains the same for all Kekul6 structures of H. 

Let A(H) be the set of all covers of  a (generalized) benzenoid system H and 
CL(H) -- min{c(e)  : C cA(H)} .  Let O(H) be the optimal objective function value 
of  the linear relaxation RLP of ILP for a benzenoid system H. Then we have 

THEOREM 4 

For a benzenoid system H, O(H) <<, CL(H). 

Before giving the proof, we need the following definition: let s be a hexagon of  
H. The three edges o f s  are said to be in a proper position if they are the right verti- 
cal edge and the nonvertical edges which are adjacent to the left vertical edge of  s 
(see fig. 9). Note  that by this definition, each edge e belongs to at most  one hexagon 
for which it is in a proper position. 

Let H be a benzenoid system. Let P(H) be the perfect matching polytope of  H,  
i.e., is the set of  all solutions of the following system: 

O 
Fig. 9. Edges of a hexagon in proper position. 
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E x i j= l  f o r i e V ( H ) ,  
j eN( i )  

0~<xi j41  for (i,j)eE(H). 

Since H is a biparti te graph, P(H) is an integral poly tope  (ref. [41] p. 108), i.e., 
each vertex of  P(H) is an integer vector. There is a one- to-one correspondence  
between vertices of  P(H) and perfect matchings  of  H defined in the following way: 
a vertex X of  P(H) corresponds to a perfect  ma tch ing  M such that  if xi,j = 1 then 
(i,j) belongs to M.  

For  a feasible solut ion X of  RLP,  let X ~ be the vector cons t ruc ted  in the follow- 
ing way: if there is a hexagon s in which the edge (i,j) is in the proper  posi t ion then  
let ~ , j  = xi,j + y~, otherwise let ~ :  = xi, j (actually this p rocedure  can be easily 
reversed). One can check easily that  ~g' belongs to P(H). 

Proof of theorem4 
Let e be a cover of  H.  Let C be any cut which belongs to C. Let  (X, Y) be a feasi- 

ble solut ion of  R L P  and X ~ = (~,j)  be the corresponding vector in P(H) obta ined  
as s tated above. Then  

E Ys<<" E X~i,J " 
s intersects C (i,j) intersects C 

Since X t is a vector  in P(H), it is a convex combina t ion  of  some vertices o f  P(H), 
i.e., there are nonnegat ive  numbers  kl,k2,... ,kin and vertices )(1, Xz,..., Xm of  
P(H) such tha t  X t --- klX1 +k2J(2 +.. .  +kmXm and kl + k 2  + . . .  +km --- 1. Let  
X~ = (~,j)(r = 1 , 2 , . . .  ,m). Then 

E =k, E 4;+k  E 
(i,j) intersects C (ij) intersects C (i j )  intersects C 

(i,j) intersects C 

By theo rem 3, 

x ! . =  
(i,j) intersects C 

So 

E 4., . . . . .  E 
(i,j) intersects C (i,j) intersects C 

s intersects C 

and thus 

s 
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Since the choices of  C and (X, Y) are arbitrary, O(H) <~ ~ Ys <~ CL(H). The p r o o f  
is completed.  [] 

COROLLARY 2 
Let  cn(H) denote the Clar number  of  a benzenoid system H.  Then cn(H) 

<~ O(H) < CL(H). 

Proof 
This immediately follows from theorem 1 and that the optimal objective func- 

tion value of  R L P  is greater than or equal to that  of  MIP.  
In ref. [11], we conjectured that cn(H) = CL(H). If  this is true, it immediately 

implies the conjecture of  the present paper, i.e., cn(H) = O(H). 

A c k n o w l e d g e m e n t s  

The first author  has been supported by F C A R  (Fonds pour  la Format ion  de 
Chercheurs et l 'Aide ~t la recherche) grant 92EQ1048, N S E R C  (Natural  Science 
and Engineering Research Council of  Canada)  grant to H.E.C.  and grant 
GP105574, and A F O S R  grant 90- 0008 to Rutgers University. The second author  
has been supported by A F O S R  grant 90-0008 to Rutgers  Universi ty and by the 
International  Fellowships Program of  N S E R C .  

References 

[1] J. Aihara, Bull. Chem. Soc. Jpn. 49 (1976) 1429. 
[2] E. Clar and M. Zander, J. Chem. Soc. (1958) 1861. 
[3] E. Clar, C.T. Ironside and M. Zander, J. Chem. Soc. (1959) 142. 
[4] E. Clar, Polycyclic Hydrocarbons, Vols. I and II (Academic Press, New York, 1964). 
[5] E. Clar, The Aromatic Sextet (Wiley, London, 1972). 
[6] I. Gutman and S.J. Cyvin, Introduction to the Theory of Benzenoid Hydrocarbons (Springer, 

Berlin, 1989). 
[7] H. Hosoya and T. Yamaguchi, Tetrahedron Lett. 52 (1975) 4659. 
[8] H. Hosoya, Topics in Current Chem. 153 (1990) 255. 
[9] O.E. Polansky and G. Derringer, Int. J. Quantum Chem. 1 (1967) 379. 

[10] J.R. Dias, Handbook of Polycyclic Hydrocarbons, Part A: Benzenoid hydrocarbons (Elsevier, 
Amsterdam, 1987). 

[ 11 ] P. H arisen and M. Zhen g, J. Chem. S oc. Faraday Trans. 88 (1992) 1621. 
[12] N. Ohkami, A. Motoyama, T. Yamaguchi, H. Hosoya and I. Gutman, Tetrahedron 37 (1981) 

1113. 
[13] S. Nikoli6, N. Trinajsti6, J.V. Knop, W.R. Miiller and K. Szymanski, J. Math. Chem. 4 (1990) 

357. 
[14] S. El-Basil and M. Randi6, J. Math. Chem. 1 (1987) 281. 
[15] S. El-Basil, Theor. Chim. Acta 70 (1986) 53. 
[16] S. El-Basil, Dis. Appl. Math. 19 (1988) 145. 



P. Hansen, M. Zheng / The Clar number of a benzenoid hydrocarbon 107 

[17] M.S.J. Dewar and G.J. Gleicher, J. Am. Chem. Soc. 87 (1965) 685. 
[ 18] M.S.J. Dewar and C. Llano, J. Am. Chem. Soc. 91 (1969) 789. 
[19] M. Randi6 and T. Pisanski, Reports in Molecular Theory 1 (1990) 107. 
[20] W.C. Herndon and H. Hosoya, Tetrahedron 40 (1984) 3087. 
[21] S. El-Basil, J. Math. Chem. 1 (1987) 153. 
[22] S. El-Basil and D.J. Klein, J. Math. Chem. 3 (1989) 1. 
[23] S. El-Basil and M. Randir, J. Chem. Soc., Faraday Trans. 84 (1988) 1875. 
[24] M. Randir, Tetrahedron 30 (1974) 2076. 
[25] M. Randir, Tetrahedron 31 (1975) 1477. 
[26] M. Randir, Pure Appl. Chem. 55 (1983) 347. 
[27] M. Randir, D. Plavgi6 and N. Trinajstir, Gazz. Chem. Ital. 118 (1988) 441. 
[28] N. Ohkami, J. Math. Chem. 5 (1990) 23. 
[29] X. Guo and F. Zhang, J. Math. Chem. 9 (1992) 279. 
[30] S.J. Cyvin, J. Brunvoll and B.N. Cyvin, J. Math. Chem. 8 (1991) 63. 
[31] I. Gutman, Z. Naturforch. 37a (1982) 69. 
[32] I. Gutman, Croat. Chem. Acta 56 (1983) 365. 
[33] I. Gutman and S. El-Basil, Z. Naturforch. 39a (1984) 276. 
[34] H. Hosoya, Theor. Chim. Acta 64 (1983) 153. 
[35] M. Zheng, J. Mol. Struct. (I'heochem) 277 (1992) 1. 
[36] M. Zheng, J. Mol. Struct. (Theochem) 231 (1991) 321. 
[37] I. Gutman and S.J. Cyvin (eds.), Advances in the Theory of Benzenoid Hydrocarbons, Topics in 

Current Chem. 153 (1990). 
[38] F. Zhang, R. Chen, X. Guo and I. Gutman, J. Serb. Chem. Soc. 51 (1986) 537. 
[39] S. El-Basil, Topics in Current Chem. 153 (1990) 273. 
[40] G.L. Nemhauser and L.A. Wolsey,. Integer and Combinatorial Optimization (Wiley, New 

York, 1988). 
[41] A. Schrijver, TheoryofLinearandlntegerProgramming(Wiley, NewYork, 1986) 
[42] I. Gutman, Bull. Soc. Chim. Beograd47 (1982) 453. 
[43] M. Zheng and R. Chen, Graphs and Combinatorics 1 (1985) 295. 
[44] G.B. Dantzig, Linear programming and Extensions (Princeton University Press, New Jersey, 

1963). 
[45] V. Chv~ttal, Linear Programming (Freeman, NewYork, 1983). 
[46] N. Karmarkar, Combinatorica4 (1984) 375. 
[47] I.J. Lustig, R.E. Marsten and D.F. Shanno, On implementing Mehrotra's predictor-corrector 

interior point method for linear programming, SIAM J. Opt. 2 (1992) 435. 
[48] I. Heller and C.B. Tompkins, Linear Inequalities and Related systems, eds. H.W. Kuhn and 

A.W. Tucker (Princeton Univ. Press, Princeton, New Jersey, 1956) pp. 247-254. 
[49] A.J. Hoffman and J.B. Kruskal in: Linear Inequalities and Related Systems, eds. H.W. Kutm 

and A.W. Tucker (Princeton Univ. Press, Princeton, New Jersey, 1956) pp. 223-246. 
[50] T.S. Motzkin, in: Numerical Analysis, Proc. of Symposia in Applied Mathematics, Vol. VI, ed. 

J.H. Curtiss (McGraw-Hill, New York, 1956) pp. 109-125. 
[51] S.J. Cyvin and I. Gutman, Kekul~ Structures in Benzenoid Hydrocarbons (Springer, Berlin, 

1988). 
[52] P. Hansen and M. Zheng, Normal Components of Benzenoid Systems, Theor. Chim. Acta 85 

(1993) 335. 
[53] P. Hansen and M. Zheng, J. Mol. Struct. (Theochem) 257 (1992) 75. 
[54] H. Sachs, Combinatorica4(1984) 89. 


